
Lab Class Scientific Computing 2022, WISM454
Adriaan Graas, Week 8

Memory

2

Computer memory hierarchy

3

● Read-write memory that computers use to load
programs: “working memory”.

● Each memory cell is accessible by an address.
○ Number of address bits determines the

maximum size of the memory.
● Computers may have multiple RAM modules, and use a

multiplexer to divide the address space between the
individual modules.

RAM (Random Access Memory)

4

Example of writable volatile
random-access memory. (source:
Wikipedia)

● Virtual memory is an abstraction of memory resources
(RAM, hard disk, …) that are available on a computer.
○ Addresses in C/C++ are not RAM addresses

but map to different backends.

● This is efficient because CPUs have address-translation
hardware (a memory management unit, MMU)

● Operating system may offload some memory to hard
disk (paging).
○ Linux/MacOS: Swap. Windows: Pagefiles.

Virtual memory

5

Virtual memory combines active RAM
and inactive memory to form a large
range of contiguous addresses. (source:
Wikipedia)

● When a program starts, the .ELF file (Executable and
linkable format) is loaded into memory.
○ .text executable code (CPU instructions)
○ .data initialized global and static variables
○ .rodata read-only data, such as constants

● After program startup, memory contains the following
segments:
○ text, data, bss are of fixed size
○ stack is a LIFO data structure for variables

that the program needs during execution
○ heap grows the opposite way, is

non-contiguous

Program memory

6

int i = 3;
char a[] = "Hello World";

static int i;
static char a[12];

functions from libc.so
functions from libtestu01.so
manually-allocated memory

unsigned next(struct LCRNG * rng, unsigned x);

● The program call stack keeps track of where the
program is during the execution.

○ When a program goes into a function it adds a
frame and local function variables onto the stack.
(Infinite recursive loop causes a stack overflow).

○ When a program leaves a function it uses a
memory address to return to right caller of the
function, and restores the previous frame.

● Some additional functions a stack has:
○ When the CPU does not have enough memory

to store intermediate values in registers (evaluation
stack).

○ Parameter passing between different function
calls.

The stack

7

● The heap is a non-contiguous part of memory that contains shared library code
and manually-allocated variables.

○ Shared between multiple CPU threads.
○ Allocation takes place by asking the operating system for some space, using

so-called system calls.

● Manual allocation of heap memory is called dynamic allocation (as opposed to
static allocation for stack variables).

○ In C: using methods as malloc() and free().
○ In C++: using the operators new and delete.
○ When using dynamic allocation, the programmer has to use responsible coding

patterns to manage memory.

The heap

8

C++
Static class members

9

● Static member variables are shared between all
objects of a class.
○ Stored in BSS (uninitialized) memory

segment.
● Two ways of accessing the variable:

1. Via an object, as member access (.)
2. Via the scope-resolution operator (::)

Static member variables

10

class Something {

public:

 static int x; // shared between all objects

};

int Something::x = 0; // initialization not in class

 // like a member function in .cpp

int main() {

 Something foo {};

 foo.x = 10; // member access sets value to 10

 Something bar {};

 std::cout << bar.x; // also 10 here

 std::cout << Something::x; // also 10 here

}

● Static member functions:
○ Do not have access to contents of

specific objects, only to static
variables.

○ Can also be called without making an
object.

● Like member variables, can be called via member
access (.) or scope-resolution (::).

Static member functions

11

class Something {

public:

 static int x;

 int y{0}; // not static

 static int get_x_times_two() {

 // cannot access `y`, but `x` is possible

 return x * 2;

 }

};

int Something::x = 0;

int main() {

 Something::x = 4;

 // also calling the function does not need an object

 std::cout << Something::get_x_times_two(); // "8"

 return 0;

}

C++
Exceptions

12

● Exceptions are a way of handling run-time
errors:

○ An exception can be thrown (Python: raised)
when a (recoverable) error occurs during the
program’s runtime.

○ Examples:
■ Reading a file, but file is not found.
■ Invalid input during the call of a

functions.
● In case of an exception, the program breaks out

of all the scopes (unwinding the stack) until the
program is aborted or the exception is handled.

What are exceptions?

13

#include <cmath>

double cubic_root(double x) {
 if (x < 0)
 throw 1234; // throws an `int`
 // not very common, for demonstration

 return std::pow(x, 1/3);
}

int main () {
 cubic_root(-1000.0);
 // terminate called after throwing an instance of 'int'
 // Aborted (core dumped)
 return 0;
}

● Exceptions may also be caught, meaning that they
can be intercepted.

● A try { ... } catch(Type e) { ... } can
be used to handle the exception.
○ try { ... } surrounds the throwing

part.
○ catch(Type e) { ... } catches any

thrown variable of type Type.

● If an exception cannot be handled in a catch, use
throw; to throw the exception again.
○ Don’t use throw e; this makes a copy or

could silently convert an exception object
to its base type (slicing).

Catching exceptions

14

...

double cubic_root(double x) {

 if (x < 0) throw 1234;

 return std::pow(x, 1/3);

}

...

try {

 double y = cubic_root(-1000.0);

} catch (int e) {

 if (e == 12345) {

 double y = 0.0; // handle exception

 } else {

 throw; // possibly an exception from

 // `pow`, let’s re-throw

 }

}

● Instead of throwing integers, throwing objects of
the std::exception class is much more useful:
○ They can contain a string with an

error message.
○ Makes handling generic exceptions

easier.

● The C++ also makes standard implementations
available, such as std::runtime_error:
○ throw std::runtime_error("Cannot accept a

domain where b < a.");

● An exception in an initializer list can be caught
using so called function try blocks. This is useful
if a base constructor throws an exception.

More about exceptions

15

class Animal {

public:

 Animal() {

 if (...) throw std::runtime_error("Oops!");

 }

};

class Dog : public Animal {

public:

 Dog() try : Animal{} {

 // constructor of `Dog`

 } catch (std::exception e) { // fn try block

 std::cerr << "Dog failed: " << e.what();

 throw; // always re-thrown, even without this

 }

};

This week

● Today / this week:
○ Exercise 2.7: Standard RNG

■ Integrating the C RNG with the Rng interface
■ Using static members
■ If exercise is too easy, consider the optional exercise 2.7.3.

● For code review: send in preferably before Friday or otherwise before Monday.
○ Other questions and 2.7 can be asked until report deadline.

16

