
Lab Class Scientific Computing 2022, WISM454
Adriaan Graas, Week 7

LCRNG
Implementations

2

Exercise 1.1

3

struct LCRNG {
 unsigned a, c, m;
};

// `next` defined for `struct LCRNG`
... next(struct LCRNG * rng, ...);

// `UniformDistribution` too
struct UniformDistribution{

 struct LCNRG * rng;

 ...

};

// `draw` depending on `Uniform distribution`
... draw(struct UniformDistribution...);

Different variations of LCRNGs could have different types

4

For example Park-Miller. An LCRNG
that would overflow and needed special
computations. We assumed c was
always zero.

Like Randu. An LCRNG that had a
power of two as m and could be
computed in a fast way.

For example SUN. An LCRNG that
needed the truncation of the right-most
bits, because it was not very random.

struct SchrageLCRNG {
 unsigned a, m;
};

struct FastModuloLCRNG {
 unsigned a, c;
 unsigned power_two;
};

struct TruncatingLCRNG {
 unsigned a, c, m;
 unsigned shift;
};

However, different types would result in code duplication

55

struct FastModuloLCRNG {
 unsigned a, c;
 unsigned power_two;
};

... next_fastmodulo(...);

struct FastModuloUniformDistribution{
 struct FastModuloLCRNG * rng;
 ...
};

... draw_fastmodulo(...);

... efficiency_fastmodulo(...);

...

struct TruncatingLCRNG {
 unsigned a, c, m;
 unsigned shift;
};

... next_truncating(...);

struct TruncatingUniformDistribution{
 struct TruncatingLCNRG * rng;
 ...
};

... draw_truncating(...);

... efficiency_truncating(...);

...

struct SchrageLCRNG {
 unsigned a, m;

};

... next_schrage(...);

struct SchrageUniformDistribution{
 struct SchrageLCNRG * rng;
 ...
};

... draw_schrage(...);

... efficiency_schrage(...);

...

1. Everybody settled on having a single struct LCRNG.
2. But to handle the variations, we had to be inventive:

○ Set m=0 for the QUICK generator;
○ Find a way to recognize when to use Schrage’s trick;
○ Find a way when to use the >> shift in SUN generator;
○ Find a way to truncate numbers when m was a power of two.

So, having multiple types was (agreeably) not a great idea

6

Avoiding code duplication, inspired by your projects, #1: macro’s!

7

#define SCHRAGE

struct LCRNG { unsigned a, c, m; };

unsigned next(struct LCRNG * rng, unsigned x) {
#ifdef SCHRAGE
 // perform Schrage's method
#else
 return rng->a * rng->c % rng->m;
#endif

}

● Idea: just redefine the next function for (the) different
type. Choose the implementation based-off a
preprocessor macro.

Avoiding code duplication, inspired by your projects, #1: macro’s!

8

#define SCHRAGE

struct LCRNG { unsigned a, c, m; };

unsigned next(struct LCRNG * rng, unsigned x) {
#ifdef SCHRAGE
 // perform Schrage's method
#else
 return rng->a * rng->c % rng->m;
#endif

}

● Idea: just redefine the next function for (the) different
type. Choose the implementation based-off a
preprocessor macro.

● Advantages:
○ Compilation to potentially fastest code.

● Disadvantages:
○ Allows only one option to be used in any

program. Not very flexible.
○ Requires recompilation when changing the

option.

Avoiding code duplication, inspired by your projects, #2: the big next function

9

struct LCRNG { unsigned a, c, m; };

unsigned next(struct LCRNG * rng, unsigned x) {

 if (rng->c == 0) {

 // mixed generator, probably something Schrage

 } else if (rng->m == 0) {

 // that must be Quick

 } else if (is_power_of_two(rng->m)) {

 // something Randu-like

 } else {

 return (rng->a * x + rng->c) % rng->m;

 }

}

● Idea: one big next function to solve it all.

Avoiding code duplication, inspired by your projects, #2: the big next function

10

struct LCRNG { unsigned a, c, m; };

unsigned next(struct LCRNG * rng, unsigned x) {

 if (rng->c == 0) {

 // mixed generator, probably something Schrage

 } else if (rng->m == 0) {

 // that must be Quick

 } else if (is_power_of_two(rng->m)) {

 // something Randu-like

 } else {

 return (rng->a * x + rng->c) % rng->m;

 }

}

● Idea: one big next function to solve it all.

● Advantages:
○ Keeps the LCRNG type clean.
○ Easy reusing code between different types.

● Disadvantages:
○ Unfortunately, performing all the

if-statements in the next is slow.
○ Cannot safely deduce when to use Schrage’s

or a >> (SUN-style) generator.

Avoiding code duplication, inspired by your projects, #2B: deferred next functions

11

struct LCRNG { unsigned a, c, m; };

unsigned schrage_next(struct LCRNG * rng, unsigned x);

unsigned quick_next(struct LCRNG * rng, unsigned x);

unsigned mod32_next(struct LCRNG * rng, unsigned x);

unsigned next(struct LCRNG * rng, unsigned x) {

 if (rng->c == 0) {

 schrage_next(rng, x);

 } else if (rng->m == 0) {

 quick_next(rng, x);

 } else if (is_power_of_two(rng->m)) {

 mod32_next(rng, x);

 } else {

 return (rng->a * x + rng->c) % rng->m;

 }

}

● Idea: same as before. One big next function to solve
it all. Now deferring the computation to sub
functions.

● A bit more organized, but fundamentally the same as
idea #2.

Avoiding code duplication, inspired by your projects, #3: complex type LCRNG

12

struct LCRNG {

 unsigned a, c, m;

 int uses_schrage, sun_shift, power_two;

};

unsigned next(struct LCRNG * rng, unsigned x) {

 if (rng->use_schrage == 1) {

 // do Schrage

 } else if (rng->m == 0) {

 // that must be Quick

 } else if (rng->truncate_bits > 0) {

 // something Randu-like

 } else {

 x = rng->a * x + rng->c) % rng->m;

 }

}

● Idea: one big next to solve it all. Storing extra
parameters in the struct.

Avoiding code duplication, inspired by your projects, #3: complex type LCRNG

13

struct LCRNG {

 unsigned a, c, m;

 int uses_schrage, sun_shift, power_two;

};

unsigned next(struct LCRNG * rng, unsigned x) {

 if (rng->use_schrage == 1) {

 // do Schrage

 } else if (rng->m == 0) {

 // that must be Quick

 } else if (rng->truncate_bits > 0) {

 // something Randu-like

 } else {

 x = rng->a * x + rng->c) % rng->m;

 }

}

● Idea: one big next to solve it all. Storing extra
parameters in the struct.

● Advantages:
○ Fast if-statements in the next.
○ Can make the next work for combinations of

different LCRNG types.

● Disadvantages:
○ LCRNG type is overloaded with members

that do not make sense for all LCRNGs.
■ E.g., ‘uses_schrage’ and ‘truncate_bits’

may be incompatible.

Avoiding code duplication, inspired by your projects, #3B: labeled LCRNGs

14

struct LCRNG {

 unsigned a, c, m;

 int label;

};

unsigned next(struct LCRNG * rng, unsigned x) {

 if (rng->label == 1) {

 // Schrage

 } else if (rng->label == 2) {

 // Quick

 } else if (rng->label == 3) {

 // Randu

 } else {

 x = rng->a * x + rng->c) % rng->m;

 }

}

● Idea: one big next to solve it all. Storing a label in the
struct.

● Same as #3: now a label is a number that
corresponds to a combination of whether or not to
use Schrage, a shift for SUN, and/or a power of two.

● A bit cleaner, a bit less flexible.

● Also possible: an enum type to give names to the
labels.

Avoiding code duplication, inspired by your projects, #4: pointer types

15

struct LCRNG {

 unsigned a, c, m;

 unsigned (*next_func)(struct LCRNG *, unsigned);

};

unsigned next_schrage(struct LCRNG *rng, unsigned x) {

 ... }

unsigned next_quick(struct LCRNG *rng, unsigned x) {

 ... }

unsigned next_default(struct LCRNG *rng, unsigned x) {

 return (rng->a * x + rng->c) % rng->m;

}

● Idea: multiple next functions. Store function pointer
to be used in the LCRNG struct.

Avoiding code duplication, inspired by your projects, #4: pointer types

16

struct LCRNG {

 unsigned a, c, m;

 unsigned (*next_func)(struct LCRNG *, unsigned);

};

unsigned next_schrage(struct LCRNG *rng, unsigned x) {

 ... }

unsigned next_quick(struct LCRNG *rng, unsigned x) {

 ... }

unsigned next_default(struct LCRNG *rng, unsigned x) {

 return (rng->a * x + rng->c) % rng->m;

}

● Idea: multiple next functions. Store function pointer
to be used in the LCRNG struct.

● Advantages:
○ After macro’s, the fastest approach, as no

if-statements are needed.
○ Clean organization of next.

● Disadvantages:
○ Would need a new next for each thinkable

combination of generators.
○ Can handle custom next functions, for

specific >> choices or powers of two, but is
complicated.

Object-oriented programming
(Subtype) polymorphism

17

● Subtype polymorphism is building a single interface to work for a variation of
types.

○ In C++, the term interface does not have a technical meaning
○ Can be just a superclass, doesn't necessarily have to be abstract

● Using inheritance, "subtyping", different implementations can be used to
implement the interface.

● Two other forms of polymorphism:
○ Ad hoc polymorphism: function overloading

■ For example constructor overloading
○ Parametric polymorphism: template types (later lecture)

What is polymorphism?

18

Polymorphism example

19

class Animal { // interface

public:

 virtual string sound() = 0;

};

class Cat : public Animal {

public:

 string sound() override { return "meow"; };

};

class Dog : public Animal {

public:

 string sound() override { return "wooff"; }

};

Polymorphism example

20

class Animal { // interface

public:

 virtual string sound() = 0;

};

class Cat : public Animal {

public:

 string sound() override { return "meow"; };

};

class Dog : public Animal {

public:

 string sound() override { return "wooff"; }

};

void explanation(Animal & animal) {

 cout << "This animal says: "

 << animal.sound() << "!" << endl;

}

int main() {

 Cat kitty {};

 Dog doggy {};

 explanation(kitty); // This ... meow!

 explanation(doggy); // This ... wooff!

 return 0;

}

Polymorphism of the Rng class

● We have an interface Rng and LCRNG and XorShift as
subtypes.

● UniformSampler depends on Rng (and not on one of the
implementations).

● Rng must be stored as a pointer or reference, as objects
cannot be created from abstract classes.

Object-oriented programming
Dynamic dispatch

22

● Whenever a member function is marked
virtual, C++ will use dynamic dispatch to call
the function:

○ The right implementation of the
function will be selected at
run-time: serious overhead.

○ In static dispatch the compiler will
select the implementation at
compile time.

● Advantage: effective type of an object can
be changed during the program’s run.

● Disadvantage: dispatch mechanism
involves additional computational cost.

What is dynamic dispatch?

23

void explanation(Animal & animal) {

 cout << "This animal says: "

 << animal.sound() << "!" << endl;

}

Classes are implemented as C-style data types and functions

24

class Dog {

public:

 virtual string sound(...) { ... };

 double weight;

};

class Dog {

 double weight;

};

void sound(Dog *this,

 ...) {

 ...

};

Objects are like
struct data types in
memory.

Member functions are
C-style functions
in memory. The object is
passed through a
special first argument.

C++ dynamic dispatch: vtables

25

class Dog {

public:

 virtual string sound() { ... "woof"; };

 double weight;

};

class PitBull : public Dog {

public:

 string sound() override { ... "WOOF"; };

};

...

Dog small_doggy {3.0};

PitBull big_dog {10.0};

● The compiler puts a small table, called a
vtable, into memory for each class (parent
or child).

○ The vtable contains the virtual
methods of the class.

● Each object will have a special pointer, a
vpointer, in memory, referring to a vtable.

● A function call uses the vpointer to find out
where to find the implementing method is
in memory.

○ vtables of derived types have
similar layout to speed-up the
lookup process.

vtable Dog
 - function pointer to
Dog::sound()

vtable PitBull
 - function pointer to
PitBull::sound()

memory for “small_doggy”
 - vtable pointer to Dog
 - weight: 3.0

memory for “big_dog”
 - vtable pointer to PitBull
 - weight: 10.0

This week

● Today / this week:
○ Exercise 2.5: Rejection method

■ For rejection with uniform upper bound, there are multiple
solutions.

○ Exercise 2.6: Distribution arithmetic
■ To prevent code duplication in Ex. 2.6.4 requires multiple

inheritance, and may be challenging. If, however, you’d like to
give it a go there is Ex. 2.6.5.

● Remark: adding appropriate plots/experiments to the report is up to you.

26

