
Lab Class Scientific Computing 2021, WISM454
Adriaan Graas, Week 5

● Coding nonuniform distributions using
○ Inversion method

■ Requires the inverse cumulative density function
○ Rejection method

■ Requires another distribution with majorizing probability density function
● C++ and Object-Oriented Programming (OOP)

○ Programming concepts
■ References, classes

○ Design concepts
■ Composition, inheritance, polymorphism

○ Compilation
■ CMake, building from the editor

Mini-report 2

2

Object-oriented programming (OOP)

3

● First introduction at MIT in late ‘50s, early ‘60s.
● In ‘70s Xerox PARC developed a language called Smalltalk.
● Became more popular in early-mid ‘80s:

○ Objective-C was developed by Brad Cox
○ C++, “C with classes” was developed by Bjarne Strousup

● In ‘90s started seeing more integration into other languages:
○ BASIC, Fortran, Pascal, COBOL

● Nowadays, many popular languages are object-oriented,
○ Python (developed at CWI)
○ Java (Sun Microsystems)
○ C# (Microsoft)

History

4

5

Programming
Paradigms

Imperative Declarative

Functional

Haskell, LISP, F#,
[Scala]

…Object-oriented

C++, Python, C#, Java

Procedural

C, FORTRAN, COBOL

struct LCRNG {

 unsigned a, c, m;

};

unsigned next(struct LCRNG * rng) {

 return rng->a...; }

void print(struct LCRNG * rng) {

 printf("a: %u, ...", rng->a, ...); }

...

struct LCRNG randu = { ... }; // object

print(randu); // `print` works on `randu`

Procedural paradigm (C)
Procedures (functions) work on data objects.
Data and functions are independent.

6

Object-oriented paradigm (C++)
Functions are attached to objects.
“Attached functions” can modify the data.

class LCRNG {

 unsigned a, c, m;

 unsigned next() {

 return a...; }

 void print() {

 printf("a: %u, ...", a, ...); }

};

...

LCRNG randu { ... }; // object

randu->print(); // `print` is a member of

`randu`

C++
Introduction

7

● The four “sublanguages” of C++:
1. C language

■ C++ is in a informal sense an extension of C: C with classes
■ There is often a C way, and a C++ way

2. Object-Oriented Programming
■ Design that revolves around the design of objects, using classes

3. Standard library (STL)
■ C++ code that has been prewritten (e.g. algorithms, data

structures)
4. Template metaprogramming

■ Pieces of code that can be reused to generate types.

“View C++ as a federation of languages” (Scott Meyers, Effective C++)

8

● C++ versions
○ C++98

■ C++ is in a informal sense an extension of C: C with classes.
■ Already: templates, STL, strings.
■ A ton of functionality in external libraries (Boost).
■ Avoid C++ suggestions from 2011 or before.

○ C++11, C++14, C++17, C++20
■ Often termed as Modern C++.
■ Resource safety (no memory leaks, buffer overflows).
■ Type safety (data belonging to the right types).
■ Much more functionality in standard library.

C++ versions

9

Hello, world!

#include <iostream>

int main() {

 std::cout << "Hello, world!" << std::endl;

 return 0;

}

10

C++
Value categories

11

● Expressions in C++ are categorized
○ Either lvalue, or rvalue.

■ Actually: it's more complicated, but this is good enough for now.
○ Confusing: it’s a category for expressions, not so much for values.

● An lvalue:
○ the expression has a name;
○ can be assigned to;
○ has a memory address.

● An rvalue:
○ is a “temporary” and disposable;
○ cleaned up after the statement (;).

Value categories

12

13

// lvalue or rvalue?

x

lvalue or rvalue?

14

// lvalue or rvalue?

x; // lvalue!

x = 4; // of course you can assign to it

lvalue or rvalue?

15

// lvalue or rvalue?

4

lvalue or rvalue?

16

// lvalue or rvalue?

4; // rvalue!

4 = x; // error: lvalue required

lvalue or rvalue?

17

// lvalue or rvalue?

x + y

lvalue or rvalue?

18

// lvalue or rvalue?

x + y; // rvalue!

x + y = 6; // error: lvalue required

lvalue or rvalue?

19

// lvalue or rvalue?

x = y

lvalue or rvalue?

20

// lvalue or rvalue?

x = y; // rvalue!

(x = y) = z; // error: lvalue required

lvalue or rvalue?

21

// lvalue or rvalue?

x = y; // rvalue!

(x = y) = z; // error: lvalue required

x = (y = z); // fine, `x` is lvalue, `y = z` an rvalue

lvalue or rvalue?

22

// lvalue or rvalue?

(*rng_pointer).m

lvalue or rvalue?

23

// lvalue or rvalue?

(*rng_pointer).m; // lvalue!

(*rng_pointer).m = 2; // no problem

lvalue or rvalue?

24

// lvalue or rvalue?

&(*pointer)

lvalue or rvalue?

25

// lvalue or rvalue?

&(*pointer); // operators return rvalues

&(*pointer) = 2; // error

lvalue or rvalue?

C++
lvalue references

26

You might know references from Python

27

import numpy as np

a = np.zeros((3, 5))
b = [1, 2, 3, 4]
c = 4

a2 = a
b2 = b
c2 = c

a2[1, 2] = 1 # changed `a2`, but did `a` also change?
b2[0] = 3 # changed `b2`, but did `b` also change?
c2 = 7 # changed `c2`, but did `c` also change?

You might know references from Python

28

import numpy as np

a = np.zeros((3, 5))
b = [1, 2, 3, 4]
c = 4

a2 = a # a reference
b2 = b # a reference
c2 = c # a copy

a2[1, 2] = 1 # changed `a2`, but did `a` also change? Yes!
b2[0] = 3 # changed `b2`, but did `b` also change? Yes!
c2 = 7 # changed `c2`, but did `c` also change? No!

29

Pointer Const pointer lvalue reference Const lvalue
reference

Type T * [const] T *

[const]

T & const T &

Usage T * ptr = &a;

T b = *ptr;
Same as pointer. T & r = a;

Mutable? Yes: change pointer

or its value.

Pointer and/or value

can be const.

Reference cannot

change, but value

can.

Neither reference

nor value.

int a = 5;

int & b = a;

b += 2;

std::cout << a << std::endl; // `a` also changed to 7!

Lvalue references in C++ are denoted by T &

30

int a = 5;

const int & b = a;

b += 2; // error: assignment of read-only reference

Const lvalue references

31

// lvalues bind to T &
int & b = x;

// lvalues bind to const T &
const int & b = x;

// rvalues do not bind to T &
int & c = 3; // error: cannot bind non-const lvalue ...

// rvalues bind to const T &
const int & d = 4; // an exception that you just need to memorize
 // think: “extend the lifespan of the rvalue”

Rules to remember
lvalues bind to const and non-const lvalue references
rvalues bind only to const lvalue references

32

/* Contract: “I might change your `a`”! */

void f(int & a) {

 a += 7;

}

...

int n = 4;

f(n); // no copy, no pointer!

std::cout << n; // prints 11

f(7); // error: why?

return 0;

Pass-by-reference

33

/* Contract: “I promise, I won’t change your `a`.” */

double f(const int & a) {

 return a * 2.0;

}

...

double a = f(4); // rvalue (4) binds to const int & (function parameter)

std::cout << a; // 8.0!

return 0;

Pass-by-const-reference

34

C++
Classes

35

● Classes are compound types and have members
○ Exactly like struct!
○ Instances of classes are, again, objects.
○ Members are either functions, or variables.

● Classes enjoy encapsulation
○ Members that are declared protected or private cannot be

accessed from outside.
● Classes can be constructed through inheritance

○ Inheritance: the type of one class can be based off another class.
○ Making variations of one type leads to polymorphic behavior.

What are classes

3623-07-2021

class Coffee {

public: // access specifier

 Coffee() { // special member: constructor

 std::cout << "Your Coffee has been constructed." << std::endl;

 }

 unsigned sugar{0}; // public member (generally, bad style: not kept internal)

protected:

 unsigned milk_{0}; // protected member (good style: internal)

};

Encapsulation
Data members are
not accessible when
they are protected or
private.

37

class Coffee {

public:

 Coffee() {

 std::cout << "Your Coffee has been constructed." << std::endl;

 }

 unsigned sugar{0};

protected:

 unsigned milk_{0};

};

...

Coffee cup {}; // “Your coffee has been constructed.”

Coffee another {}; // “Your coffee has been constructed.”

another.sugar = 2;

another.milk_ = 2; // error: unsigned int Coffee::milk_ is protected

another.milk_; // error: unsigned int Coffee::milk_ is protected

Encapsulation
Data members are
not accessible when
they are protected or
private.

38

class Coffee {

public:

 ...

 void add_milk() { // good style: allows protection object state

 if (milk_ > 2) { // too much milk, doesn't fit in cup, raise error }

 milk_ += 1;

 }

 unsigned get_milk() { return milk_; }

protected:

 ...

 unsigned milk_{0};

};

Encapsulation
Access data through
class using member
functions.

39

class Coffee {

public:

 ...

 void add_milk() { // good style: allows protection object state

 if (milk_ > 2) { // too much milk, doesn't fit in cup, raise error }

 milk_ += 1;

 }

 unsigned get_milk() { return milk_; }

protected:

 ...

 unsigned milk_{0};

};

...

Coffee cup {}; // “Your coffee has been constructed.”

 // cup.get_milk() would give 0

cup.add_milk(); // now cup.get_milk() is 1

cup.add_milk(); // now cup.get_milk() is 2

cup.add_milk(); // error: too much milk

Encapsulation
Access data through
class using member
functions.

40

 // the base class (parent) has only `sugar_`

class BlackCoffee {

public:

 virtual double price() { ... } // virtual allows overriding

protected:

 unsigned sugar_;

};

41

Inheritance
Derive one type from the
other.

/* The base class (parent) */

class BlackCoffee {

public:

 virtual double price() { ... } // virtual allows overriding

protected:

 unsigned sugar_;

};

/* The derived class (child)

 * “is-a” BlackCoffee but has also `milk_` */

class Cappuccino : public BlackCoffee {

public:

 double price() override { ... } // - replaces `price()` from base

 // - has access to `sugar_` from base

 // - can call `price()` from base

protected:

 unsigned milk_;

};

42

Inheritance
Derive one type from the
other.

/* The base class (parent) */

class BlackCoffee {

public:

 virtual double price() { ... } // virtual allows overriding

protected:

 unsigned sugar_;

};

/* The derived class (child)

 * “is-a” BlackCoffee but has also `milk_` */

class Cappuccino : public BlackCoffee {

public:

 double price() override { ... } // - replaces `price()` from base

 // - has access to `sugar_` from base

 // - can call `price()` from base

protected:

 unsigned milk_;

};

43

Inheritance
Derive one type from the
other.

C++
Abstract & concrete classes

44

/* An abstract class has at least one pure virtual method */

class Priceable {

public:

 virtual double price() = 0; // A function is called pure virtual when:

 // - virtual allows override in subclass

 // - = 0 function is not implemented

}

45

Abstract class
A class that has one
or multiple pure virtual functions.

/* An abstract class */

class Priceable {

public:

 virtual double price() = 0; // pure virtual

}

/* A concrete class, because `price` has been implemented. */

class BlackCoffee : public Priceable {

public:

 virtual double price() override {

 ...

 }

}
46

Concrete class
A class that is not abstract.

C++
Constructors and initialization

47

● The constructor of a class initializes an object.

● Two steps:
1. Initialization list

■ Must initialize all the members of the class!
2. Body

■ Some code block that can be run once the initialization has
completed.

Constructors

48

Constructors

49

class Coffee {

public:

 Coffee()

 : sugar_(1), milk_(1) // 1. initializer list “: ..., ..., ..."

 { // 2. body “{ ... }”

 std::cout << "Your Coffee has been constructed." << std::endl;

 milk_ = 2; // assignment, not initialization!

 }

protected:

 unsigned sugar_;

 unsigned milk_{1}; // default initializer was ignored

};

Constructor with arguments & constructor overloading

50

class Coffee {

public:

 Coffee(unsigned sugar, unsigned milk = 1)

 : sugar_(sugar), milk_(milk)

 { }

 Coffee() // constructor overloading, having two or more constructors is totally fine

 : sugar_(0), milk_(0)

 { }

};

...

Coffee foo {2}; // first ctor: 2 sugar, 1 milk

Coffee bar {2, 2}; // first ctor: 2 sugar, 2 milk

Coffee baz; // second ctor: 0 sugar, 0 milk

There are many ways of initialization
Thanks to overload resolution, they usually do the same thing.

51

class Coffee {

...

};

// https://en.cppreference.com/w/cpp/language/initialization

Coffee x; // “default initialization” for ctor without args

Coffee x {}; // brace initialization for ctor without args

Coffee x(2, 2); // direct initialization

Coffee x {2, 2}; // brace initialization (preferred)

Coffee x = {2, 2}; // copy-list-initialization

Coffee x = Coffee(2, 2); // copy initialization (makes no copy here)

Coffee y(x); // copy initialization

Coffee y = x; // also copy initialization

https://en.cppreference.com/w/cpp/language/initialization

This week

● Today / this week:
1. Start C++ project with CMake
2. Read about inversion method and rejection method
3. Exercises 2.1 and 2.2

■ Make classes for RNGs, UniformDistribution, and
UniformSampler.

■ Look at Notes 2.3 for C++ source-header example of a class.

52

