
Lab Class Scientific Computing 2022, WISM454
Adriaan Graas, Week 3

C programming
Functions as contracts

2

Think of functions of contracts, not as implementations

3

double sqrt(double x);

I will give an
x >= 0

I will return an
x >= 0

Contracts, intuitively

● 1. The function is responsible of checking the contract
○ The program should fail if the caller violates the contract.

● 2. A good contract is generic
○ Function works for many cases

● 3. A good contract is restricted by types
○ Do not ask for int if the function only works for unsigned int

● 4. A good contract is unambiguous about what it does
○ Works on input arguments and returns in return values
○ Has no unexpected effect elsewhere in the program

4

Is this a good or bad contract?

5

/* Writes number to file.

 * Contract: file `name` must exist already. */

void write_to_file(char * name, int x) {

 ...

 if (file_not_exists(name)) {

 printf(“Error: file does not exist!”);

 exit(0);

 }

 ...

}

Is this a good or bad contract?

6

/* Writes number to file.

 * Contract: file `name` must exist already. */

void write_to_file(char * name, int x) {

 ...

 if (cannot access file) {

 printf(“Error: file does not exist!”);

 exit(0);

 }

 ...

}

Better contract!

7

/* Writes number to file.

 * If file does not exist, returns -1. */

int write_to_file(char * name, int x) {

 ...

 if (cannot access file) {

 return -1;

 }

 ...

}

Has this function a good or bad contract?

8

/* Generates a random number

 * from Student's t distribution

 * using the RANDU LCRNG. */

void draw() {

 struct * LCRNG randu = {...};

 return student_t(next(randu));

}

Better already!

9

/* Generates a random number

 * from Student's t distribution. */

void draw_from_student_t(struct * LCRNG rng) {

 return student_t(next(rng));

}

What about this?

10

/* Computes x^(1/3) */

double cubic_root(double x) {

 return pow(x, 1/3);

}

What about this?

11

/* Computes x^(1/3)
 * Requires x >= 0. */
double cubic_root(double x) {
 if (x < 0) {
 printf("Invalid argument: x < 0.\n")
 exit(0);
 }
 return pow(x, 1/3);
}

/* Computes x^(1/3)
 * Returns -1 if not x >= 0.*/
double cubic_root(double x) {
 if (x < 0) {
 return -1;
 }
 return pow(x, 1/3);
}

What about this?

12

/* Computes x^(1/3)
 * Requires x >= 0. */
double cubic_root(double x) {
 if (x < 0) {
 printf("Invalid argument: x < 0.\n")
 exit(0);
 }
 return pow(x, 1/3);
}

/* Computes x^(1/3)
 * Returns -1 if not x >= 0.*/
double cubic_root(double x) {
 if (x < 0) {
 return -1;
 }
 return pow(x, 1/3);
}

Stricter contract. More flexible contract. Returning -1
may be confusing. The caller could
have checked for x < 0 themselves.

Design-by-contract programming

● Preconditions
○ Conditions that should result in legal and

correct behavior.
○ If not obvious, should be checked by the

function.
● Postconditions

○ The guaranteed output.
● Side-effects

○ Changing state of something outside the
function. This is less transparent.

● Invariants
○ Conditions that still hold after the function

has been called.
■ Either on arguments or on some

external state

13

Think about your function design

14

/* Given an x, and a LCRNG (a,c,m)

 * produces the next x.

 * ...

 */

unsigned next(struct * LCRNG rng, unsigned int x) {

 // exit with error when requirements are not fulfilled

}

● Think about functions in your program:
○ What requirements do my functions have?
○ What do I do when requirements are not met?

Compilation
Run-time and compile-time

15

Run-time vs. compile-time

● It is often necessary to choose if something needs to be a “run-time” or a
“compile-time” decision.
○ Run-time and compile-time refer to moment during the program’s

execution, and moment during the program’s compilation.

16

Run-time Compile-time

● Reading input arguments from the
terminal

● Reading data out of a file.

● Turning code on or off with comments
● Using macro’s (#define, #if, #else, …)
● Compiler options, such as optimizations
● Constants in the code

Run-time vs. compile-time

● Typical run-time decisions
○ Algorithm parameters
○ Output requirements

● Compile-time decisions
○ Platform choices, such as precision of computation
○ Whether or not have debugging statements enabled

● The compiler can not optimize run–time decisions
● Run-time options require usually a bit more work to implement

17

Compilation
Libraries

18

Compilation again

19

uniform.h

uniform.c

headers

sources tests.c

stdio.h

preprocessor

Compilation again

20

uniform.h

uniform.c

headers

sources

libc.so

tests.c

stdio.h

uniform.oobjects/libs tests.o

compiler

preprocessor

Compilation again

21

uniform.h

uniform.c

headers

sources

libc.so

tests.c

stdio.h

uniform.oobjects/libs tests.o

compiler

preprocessor

linker

./testsexecutable

Compilation again

22

uniform.h

uniform.c

headers

sources

libc.so

tests.c

stdio.h

uniform.oobjects/libs tests.o

compiler

preprocessor

linker

./testsexecutable

Compilation again

23

uniform.h

uniform.c

headers

sources

libc.so

tests.c

stdio.h

uniform.oobjects/libs tests.o

compiler

preprocessor

linker

./testsexecutable

Library

Libraries

● A library is a reusable C/C++ component, consisting of
○ An archive of object files (.o)
○ Header files

● A library can be build the same way as an executable
○ A non-executable outcome of the linker

● Three types of libraries:
○ Shared libraries (an shared-object file .so + headers)

■ Loaded into memory when program starts. Also called
“dynamic” libraries.

○ Static libraries (an archive .a file + headers)
■ Compiled into your own program, similar to your own .o files.

○ Header-only libraries (no archive)
■ Compiled into your own program, via #includes.

24

Installing a (shared) library from an external party

● Step 1: downloading a library
○ Either as sources: .c files + .h files or as precompiled library: .so

file + .h files
○ Linux/WSL: precompiled library may be available through package

manager
○ MacOS: precompiled library may be available through Homebrew,

MacPorts or Fink.
● Step 2: compilation (if downloaded as sources)

○ Often there is a README or INSTALL file with instructions.
○ Almost always a script is provided for compilation: either a

Makefile, Automake, or CMake file.
● Step 3: installation

○ .so and .h files (and other things such as documentation) are
copied into installation directories.

■ If system user (root) installation typically in system dirs
■ If own user, you may install anywhere, for example in ~/local/

25

Resolving shared libraries

● Shared libraries (.so) files need to be found when the program is
executed.
○ Option 1: install .so file into system path
○ Option 2: tell where .so file is when starting the program
○ Option 3: hardcode .so location into the executable (ELF)

● Option 1
○ The system automatically searches for .so files in system

directories, such as /usr/lib. Nothing needs to be done.
● Option 2

○ Execute a program with an environment variable
■ LD_LIBRARY_PATH=/path/to/lib/dir ./program

● Option 3
○ Compile the executable with

■ gcc program.c -o program -Wl,--rpath -Wl,/path/to/lib/dir

26

Tips

27

Header tips

● About header files:
○ Don’t forget #pragma once.
○ Structs are declarations, so belong in headers.

● Using comments in code:
○ Comments about how a function works (contract) in headers

○ Comments about implementations in sources.

28

/* Draws a uniform random number in [0, 1). */
double draw(struct UniformDistribution *distr);

Don’t forget: function calls are slow

● Function calls are a big performance overhead, especially for small
computations.

● If you want to use function calls in computations, make sure to compile
with -O3, or research about inline functions.

29

unsigned next(struct * LCRNG rng, unsigned int x) {

 if (some_condition) {

 next_for_quick(rng, ...);

 } if (...) {

 next_schrage(rng, ...);

 } else ...

}

This week

● Deadline postponed by one week
● Today / this week:

○ Try to do exercise 1.7.2 (installing TestU01) today
○ This and next week 1.7 and 1.8

30Lab class scientific computing, Lecture 2

