
Lab Class Scientific Computing 2022, WISM454
Adriaan Graas, Week 10

C++ programming
std::vector

2

#include <vector>

// Data on the heap, so dynamic size. (C-style arrays are on the stack).

std::vector<int> v {7, 5, 16, 8};

v.push_back(25); // insert at the end (constant time)

v.insert(v.begin() + 2, 25); // insert at place 3 (slow, all data moves)

// loop example with `size_t` (a type guaranteed to handle the max. array size)

for (size_t i=0; i < v.size(); ++i) {

 std::cout << v[i] << " ";

}

Example of std::vector

3

// - Initialization from “brace-enclosed list”

std::vector<int> some_numbers = {7, 5, 16, 8};

// - Initialization with a fixed size

auto v = std::vector<int>(6); // integers are zero-initialized

// - Initialization using 3 copies of a copyable object

// (Suppose here that HitOrMiss is copyable)

std::vector<HitOrMiss> hello {3, HitOrMiss(...)};

A few example of std::vector initialization

4

// a vector of functions: int -> int: `std::function<int(int)>`

auto funcs = std::vector<std::function<int(int)>>(...);

// easy iteration with a range-based for loop

int sum = 0;

for (auto func : funcs) {

 sum += func(1);

}

Range-based for loops

5

Other containers

● std::vector is the most common “container type”
○ Other containers have different qualities

■ std::list has O(1) insertion
■ std::set is always ordered value-wise
■ std::stack is a LIFO stack
■ std::array wraps a C-style array

● Overview of functions:
○ https://hackingcpp.com/cpp/std/vector.html
○ https://en.cppreference.com/w/cpp/container/vector

6

https://hackingcpp.com/cpp/std/vector.html
https://en.cppreference.com/w/cpp/container/vector

C++ programming
Iterators

7

Container types and memory

● std::vector
○ An array that is dynamic (automatically expands).
○ Elements are stored contiguously in memory.

■ Access to any element is fast (constant).
■ Insertion/removal in the middle is slow, as all the elements in

memory need to be moved.
● std::list

○ Every element in the list stores pointers
to the previous and next element.

○ Elements may be noncontiguously stored.
■ Access to arbitrary element is slow, as

the list must be traversed.
■ Insertion/removal is always fast.

8

7 5 16 8

7 5 16 8

int main() {

 std::vector<int> v = {7, 5, 16, 8};

 // an "iterator" is a type to help traversing the vector

 auto it = v.begin(); // type std::vector<int>::iterator

 ...

}

Iterators are a generic way of traversing containers

9

7 5 16 8

v.begin() v.end()

std::vector<int> v = {7, 5, 16, 8};

auto it = v.begin();

// iterators can be dereferenced

std::cout << *it; // prints "7"

// and incrementing moves the iterator

it++;

// and can be compared to other iterators

auto it2 = v.end();

while (it != it2) { it++; }

Iterators are a generic way of traversing containers

10

7 5 16 8

7 5 16 8

7 5 16 8

std::vector<int> v = {7, 5, 16, 8};

std::sort(v.begin(), v.end(), std::greater<>()); // Sorting descending (>)

 {16, 8, 7, 5}

auto it = std::next(v.begin(), 3); // Shuffling first 3 elements

std::shuffle(v.begin(), it); {7, 16, 8, 5}

auto it2 = std::prev(v.end(), 2); // Filling last 2 elements

std::fill(it2, v.end(), 42); {7, 16, 42, 42}

STL functions often expect iterators, rather than containers

11

● Iterator taxonomy:
○ Forward iterator it++
○ Bi-directional iterator it++ and it--
○ Random access iterator can jump, e.g. it += 7 to go 7 places at once
○ Input iterator read-only
○ Output iterator write-only

● Containers types expose iterators that are in line with their capabilities. For example:
○ std::vector returns a random access iterator.

■ Easy to grab a value from any spot in memory at once.
○ std::list returns a bi-directional iterator.

■ Traversing left or right in the array is easy, but jumping is not.

12

Iterator taxonomy

This week

● Today / this week:
○ Multi-dimensional Monte Carlo methods

■ Hit-or-miss and Simple-sampling Monte Carlo in d dimensions
■ Sampling from non-rectangular domains
■ Sampling from a low-discrepancy lattice rule

● Next week:
○ Template metaprogramming

■ Three examples where metaprogramming is useful

13

