
Lab Class Scientific Computing 2022, WISM454
Adriaan Graas, Week 1

Course overview

2

3Lab class scientific computing, Lecture 1

Computer
Science

Biology,
physics,
engineering,
.…

Mathematics

Scientific Computing

High-Performance
Computing (HPC)

Mathematical
Modeling

Lab. Class, at a glance

● Mathematics
○ Random number generators
○ Monte Carlo integration
○ Genetic Algorithms / Nonlinear optimization

● Computer Science
○ Programming languages: C and C++
○ Object-oriented programming
○ Efficiency, Code design

● Experimentation
○ Evaluating results, studying parameters

● Reporting
○ Drawing conclusions
○ Writing, presentation

4Lab class scientific computing, Lecture 1

Format

● Short lectures + working on exercises
● Independent learning

○ Lectures and C/C++ notes “guide” topics
○ Use books/references to find in-depth explanations
○ Use lab. class hours to get feedback and ask questions
○ Stuck: send an e-mail!

● Collaboration encouraged! But don’t share proofs or code.

5Lab class scientific computing, Lecture 1

● Course website
○ https://www.labclass.nl/

● Contact / send in reports:
○ a.b.m.graas@uu.nl (Adriaan Graas)

● Material
○ Everything available on website
○ LCSC course book of previous years available as PDF

Organization

6Lab class scientific computing, Lecture 1

Grading

7Lab class scientific computing, Lecture 1

● Three “mini-projects”
○ Each report contributing a 20% to the grade
○ Exercises need to be integrated into the reports
○ Overleaf template
○ See website for grading matrix

● Final project
○ 40% grade
○ Freedom to select your own topic in nonlinear optimization
○ Work in teams if you like
○ Short presentation with a couple of slides

COVID-19 situation

● If unable to attend class, please send an email to a.b.m.graas@uu.nl
○ Preferably in advance, or as soon as possible

8Lab class scientific computing, Lecture 1

Focus of the first project

● Linear Congruential Random Number Generators (LCRNGs)
○ A recursive expression for generating random numbers

■ Must be fast, numbers must be uniform, and random-like
○ See theory on website

● Start with programming in C, for now no C++
○ Program the LCRNG as “a type”, and program one function

next() to draw numbers for LCRNGs with different
parameters

○ Write “clean code”
○ Hands-on: how to use the shell, compile, use libraries.

● Experimentation
○ Look at efficiency
○ Perform statistical test with integrating TestU01
○ Validate written program

9Lab class scientific computing, Lecture 1

C and C++ programming

10

● C appeared in 1972
○ Dennis Ritchie (left)
○ Relatively small language

1123-07-2021

● C++ appeared in 1985
○ Bjarne Stroustrup
○ “Extension” of C
○ Object-oriented programming and

template meta-programming
○ Large feature set

1223-07-2021

The C programming language (Wikipedia)

● Low-level (compiled) language benefits
○ “Critical code” is faster, closer to the hardware
○ Used for embedded systems, supercomputers, medical equipment,

aerospace engineering
● Rich features and many libraries

○ Numerical solvers, FFTs, linear algebra, …
● Common back-end for higher-level languages

○ Many Python projects use bindings with C/C++ (e.g. Cython, PyBind11)
■ NumPy is accelerated with the C/C++ Intel MKL (Math Kernel Library)

○ MatLab compiles .mex files
● Probably most important languages for Scientific/High performance Computing

○ Multithreading & parallel computing (BSP, MPI, OpenMP)
○ GPU acceleration with CUDA (used for Deep Learning)

When to use C or C++ in Scientific Computing

1323-07-2021

1423-07-2021

C programming
Built-in types

15

Hello, world!

#include <stdio.h>

int main() {
 printf("Hello, world!\n");
 return 0;
}

16Lab class scientific computing, Lecture 1

“Hello, world!” program by C-coauthor Brian Kernighan
(1978) (Wikipedia)

// examples of common types

int dist = -11; // integer, in “two’s complement” format

unsigned int nr_apples = 5; // positive int, usually 32 bits

double temp = 18.32; // 64 bits, double-precision floating-point

// example conversions

dist = (int) 7.0; // casting: float-to-int

int b = 7.0; // automatically (implicitly) converted

Built-in types

17Lab class scientific computing, Lecture 1

C programming
Pointer types

18

...

 int a = 5;

 int * address_of_a = &a; // pointers type is denoted by a `*`

 // `&` is the address-of operator

 printf("Address: %x\n", address_of_a); // "Address: cf2a403f"

...

Pointers: a type that stores memory addresses

19Lab class scientific computing, Lecture 1

...

 int a = 5;

 int * address_of_a = &a; // pointers type is denoted by a `*`

 // `&` is the address-of operator

 printf("Address: %x\n", address_of_a); // "Address: cf2a403f"

...

A pointer is a type, a pointer is not an operation

20Lab class scientific computing, Lecture 1

...

 int a = 5;

 int * address_of_a = &a; // pointers type is denoted by a `*`

 // `&` is the address-of operator

 printf("Address: %x\n", address_of_a); // "Address: cf2a403f"

 int b = *address_of_a; // `*` is the dereference operator

 printf("Value: %d\n", b); // "Value: 5"

...

The dereference operator

21Lab class scientific computing, Lecture 1

...

 // assume `bar` points to an `int`

 int * foo = 7 * *bar;

...

Working with pointers can be confusing. Is this valid?

22Lab class scientific computing, Lecture 1

...

 // assume `bar` points to an `int`

 int * foo = 7 * *bar;

...

test.c: In function ‘main’:

test.c:7:17: warning: initialization of ‘int *’ from ‘int’ makes pointer

from integer without a cast [-Wint-conversion]

 7 | int * foo = 7 * *bar;

 |

Working with pointers can be confusing. Is this valid?

23Lab class scientific computing, Lecture 1

...

 int * foo = &(7 * 2);

...

Another one. Do you think this is valid?

24Lab class scientific computing, Lecture 1

...

 int * foo = &(7 * 2);

...

test.c: In function ‘main’:

test.c:5:15: error: lvalue required as unary ‘&’ operand

 5 | int * a = &(7 * 2);

 |

Another one. Do you think this is valid?

25Lab class scientific computing, Lecture 1

...

 int * bar = ...;

 int * foo = bar + 2;

...

Last one. Valid?

26Lab class scientific computing, Lecture 1

...

 int * bar = ...;

 int * foo = bar + 2;

...

// Valid! This is called pointer arithmetic.

 `foo` now points to whatever is stored two integer sizes

 (not two memory addresses) after `bar`. It is up to the

 programmer to make sure this does not do something unexpected.

Last one. Valid?

27Lab class scientific computing, Lecture 1

void do_something(LargeData * numbers, ...) {

 ... = *numbers;

}

int main() {

 LargeData numbers = {...};

 do_something(&numbers, ...); // address-of `numbers`

 ...

 return 0;

}

Among other things, pointers are used to prevent copying (large) data in function calls

28Lab class scientific computing, Lecture 1

void do_something(LargeData * numbers, ...) { // copies pointer, cheap!

 ... = *numbers;

}

int main() {

 LargeData numbers = ...;

 do_something(&numbers, ...);

 ...

 return 0;

}

Among other things, pointers are used to prevent copying (large) data in function calls

29Lab class scientific computing, Lecture 1

void do_something(LargeData * numbers, ...) {

 ... = *numbers; // get `data` again, with the dereference operator

}

int main() {

 LargeData numbers = ...;

 do_something(&numbers, ...);

 ...

 return 0;

}

Among other things, pointers are used to prevent copying (large) data in function calls

30Lab class scientific computing, Lecture 1

C programming
Struct: a user-defined type

31

...

 struct vec { // a struct: `vec` (2-dim vector)

 double x;

 double y;

 }

 struct vec north = {0.0, 1.0}; // initializations of user-def

 struct vec east = {1.0, 1.0}; types are called objects

...

Another category of types: User-defined types

32Lab class scientific computing, Lecture 1

struct Person {

 unsigned int age;

 float height;

}

struct Person anna = {32, 1.75}; // an object of type `Person`

anna.age = anna.age + 1;

printf("Anna is %u year, and %f meter tall.", anna.age, anna.height);

// "Anna is 33 year, and 1.75 meter tall."

The member access operator (.)

33Lab class scientific computing, Lecture 1

void some_function(struct vec * direction) {

 // option 1: first dereference (*), then member access (.)

 ... = (*direction).x;

 // option 2: arrow operator does the same

 ... = direction->x;

}

...

The arrow operator (->)

34Lab class scientific computing, Lecture 1

● C / C++ are compiled languages:
○ Compiling, or “building”, turns code into machine-specific instructions for the CPU.

■ This gives an executable (in Windows, a .exe). It’s not human-readable.
○ “Running” means launching the executable on the CPU.

● Installation of a C/C++ compiler:
○ I recommend using Linux, Windows Subsystem for Linux, or MacOS.

■ Only use CygWin or MingW if no other option is possible.
○ Use the GCC (GNU Compiler Collection)

■ Alternative: LLVM or Intel are also fine. Avoid MSVC.
● Choice of editor:

○ I recommend Jetbrains’ CLion, because it has good Linux integration.
○ If you are comfortable with e.g., vim or Microsoft Visual Studio + GCC + WSL, this

might be a good alternative.

Compilation

35Lab class scientific computing, Lecture 1

Outline

● Today/this week:
○ Set-up your programming environment

■ Follow CLion instructions on website
■ As a test, compile a simple program

○ Reading/scanning
■ Read theory on LCRNGs
■ Read/go through “C overview”

○ Useful: do/read the tutorial Getting started
○ Exercises

■ 1.1, 1.2, 1.3, 1.4

36Lab class scientific computing, Lecture 1

