Lab Class Scientific Computing 2022, WISM454

Adriaan Graas, Week 1

Course overview

§“g% Utrecht
%ﬂ§ University

Scientific Computing

Biology,

physics,
Computer engineering, "
Science 5

Mathematical

High-Performance Modeling

Computing (HPC)

w2 Utrecht
University

SCIENTISTS DEVELOP DETAILED
REPRESENTATION OF CLOUDS IN
WEATHER AND CLIMATE MODELS

A team of climate researchers and computational experts has
developed an innovative method to study cloud dynamics in
unprecedented detail in weather and climate models.

NEW MATHEMATICAL MODELS FOR WIND
TURBINE LOAD CALCULATIONS

New mathematical models developed by PhD student Laurent
van den Bos can help to determine the best possible way to
establish new wind farms. His thesis received the predicate Cum
Laude.

WEATHER FORECAST TECHNIQUES HELP
FIND THE PERFECT OIL DRILL

A new way of processing data from rock measurements could
lead to a much more efficient oil extraction. During her PhD
research, Sangeetika Ruchi developed a method to infer the most
probable rock properties, based on only a few indirect
measurements.

Lab class scientific computing, Lecture 1

Lab. Class, at a glance

e Mathematics

o Random number generators

o Monte Carlo integration

o Genetic Algorithms / Nonlinear optimization
e Computer Science

o Programming languages: C and C++

o Object-oriented programming

o Efficiency, Code design
e [Experimentation

o Evaluating results, studying parameters
e Reporting

o Drawing conclusions
o Writing, presentation

&y L .
& Unversity Lab class scientific computing, Lecture 1

Format

e Shortlectures + working on exercises
e Independent learning
o Lectures and C/C++ notes “guide” topics
o Use books/references to find in-depth explanations
o Use lab. class hours to get feedback and ask questions
o Stuck: send an e-mail!
e (ollaboration encouraged! But don't share proofs or code.

RN . o .
%TS Dot ey Lab class scientific computing, Lecture 1

Organization

e (Course website
o https://www.labclass.nl/
e (Contact /send in reports:
o a.b.m.graas@uu.nl (Adriaan Graas)
e Material
o Everything available on website
o LCSC course book of previous years available as PDF

&y L .
& Unversity Lab class scientific computing, Lecture 1

Grading

e Three "mini-projects”
o Each report contributing a 20% to the grade
o [Exercises need to be integrated into the reports
o Overleaf template
o See website for grading matrix
e Final project
40% grade
Freedom to select your own topic in nonlinear optimization
Work in teams if you like
Short presentation with a couple of slides

O O O

RN . o .
%w Utrecht Lab class scientific computing, Lecture 1

n§ University

COVID-19 situation

e [funable to attend class, please send an email to a.b.m.graas@uu.nl
o Preferably in advance, or as soon as possible

N . - .
%ﬁé Onversity Lab class scientific computing, Lecture 1

Focus of the first project

e Linear Congruential Random Number Generators (LCRNGS)
o Arecursive expression for generating random numbers
m Must be fast, numbers must be uniform, and random-like
o See theory on website
e Start with programming in C, for now no C++
o Program the LCRNG as “a type”, and program one function
next() to draw numbers for LCRNGs with different
parameters
o Write “clean code”
o Hands-on: how to use the shell, compile, use libraries.
e [Experimentation
o Look at efficiency
o Perform statistical test with integrating TestU01
o Validate written program

&y L .
& Unversiy Lab class scientific computing, Lecture 1

C and C++ programming

§“§7 % Utrecht
%ﬂ§ University

THE

PROGRAMMING
LANGUAGE
e (Cappearedin 1972 e (++appearedin 1985
o Dennis Ritchie (left) o Bjarne Stroustrup
o Relatively small language o "“Extension” of C

Object-oriented programming and
template meta-programming
o Large feature set

L e 23-07-2021

..
. D

leec) @ python QoenGL

Graphical User Interface
..,:?.'.
H THE : Operallng Systems
: 1{\ Pt
H :.’o' H
! 3(“‘// !:::.-.--’- ‘L'nux
. i R :
SPROGRAMMING: %, i
e LANGUAGE e, %
- . L i
SRR RRARERRRRARY .. ---------------------------

Web Development

/APA CHE

HTTP SERVER PROJECT

The C programming language (Wikipedia)

Unmensity 23-07-2021

When to use C or C++ in Scientific Computing

e |ow-level (compiled) language benefits
o “Critical code” is faster, closer to the hardware
o Used for embedded systems, supercomputers, medical equipment,
aerospace engineering
e Rich features and many libraries
o Numerical solvers, FFTs, linear algebra, ...
e Common back-end for higher-level languages
o Many Python projects use bindings with C/C++ (e.g. Cython, PyBind11)
m NumPy is accelerated with the C/C++ Intel MKL (Math Kernel Library)
o MatLab compiles .mex files
e Probably most important languages for Scientific/High performance Computing
o Multithreading & parallel computing (BSP, MPI, OpenMP)
o GPU acceleration with CUDA (used for Deep Learning)

S Girech 23-07-2021

%‘l@ University

13

V% Utrecht
/NS University

Ratings (%)

30

25

20

15

10

2002

=== Python
= C#
= SQL

2004

TIOBE Programming Community Index

Source: www.tiobe.com

2006 2008 2010 2012 2014 2016
- C w Java
=== \/isual Basic JavaScript

PHP

2018 2020
e CH+
== Assembly language

2022

23-07-2021

14

C programming

Built-in types

§“§7 % Utrecht
%ﬂ§ University

§“ g% Utrecht

(N

\¥ University

Hello, world!

#include <stdio.h>

int main() {
printf("Hello, world!\n");
return 0;

® 0 6 0 06 0 0 0 0 0 0 e 5 6 0 06 0 0 0 ° 0 o

.
.
°
°
.
°
°
°
°
)
°
°
)
.
0
)
.
°
.
.
.
.

“Hello, world!” program by C-coauthor Brian Kernighan
(1978) (Wikipedia)

Lab class scientific computing, Lecture 1

16

Built-in types

// examples of common types

int dist = -11; // integer, in “two’s complement” format
unsigned int nr_apples = 5; // positive int, usually 32 bits
double temp = 18.32; // 64 bits, double-precision floating-point

// example conversions
dist = (int) 7.9; // casting: float-to-int
int b = 7.9; // automatically (implicitly) converted

Uneetiey Lab class scientific computing, Lecture 1

C programming
Pointer types

§“§7 % Utrecht
%ﬂ§ University

&

Utrecht
University

Pointers: a type that stores memory addresses

int a = 5;
int * address_of_a = &a; // pointers type is denoted by a "*°

// "& 1is the address-of operator
printf("Address: %x\n", address_of_a); // "Address: cf2a403f"

Lab class scientific computing, Lecture 1

19

o

Utrecht
University

A pointer is a type, a pointer is not an operation

int a = 5;
int * address_of_a = Ba; // pointers type is denoted by a “*°

// & is the address-of GPCEGtoOR

printf("Address: %x\n", address_of_a); // "Address: cf2a403f"

Lab class scientific computing, Lecture 1

20

&

Utrecht
University

The dereference operator

int b = *address_of_a; // "* 1is the dereference operator
printf("value: %d\n", b); // "Value: 5"

Lab class scientific computing, Lecture 1

21

§!@ Utrecht
%ﬂ§ University

Working with pointers can be confusing. Is this valid?

// assume ‘bar’® points to an “int’

int * foo = 7 * *bar;

Lab class scientific computing, Lecture 1

22

§“g% Utrecht
“§ University

Working with pointers can be confusing. Is this valid?

// assume ‘bar’® points to an “int’

int * foo = 7 * *bar;

test.c: In function ‘main’:
test.c:7:17: warning: initialization of ‘int *' from 'int’ makes pointer
from integer without a cast [-Wint-conversion]

7 | int * foo = 7 * *bar;

Lab class scientific computing, Lecture 1

23

§ g% Utrecht
%ﬂ@ University

Another one. Do you think this is valid?

int * foo = &(7 * 2);

Lab class scientific computing, Lecture 1

24

% Utrecht
“§ University

Another one. Do you think this is valid?

int * foo = &(7 * 2);

test.c: In function ‘main’:
test.c:5:15: error: lvalue required as unary ‘&’ operand
5 | int * a = &(7 * 2);
I

Lab class scientific computing, Lecture 1

25

Last one. Valid?

int * bar

int * foo

éﬂ!@ Utrecht

%“§ University

bar + 2;

Lab class scientific computing, Lecture 1

26

Last one. Valid?

int * bar R

int * foo bar + 2;

// Valid! This is called pointer arithmetic.
“foo® now points to whatever is stored two integer sizes
(not two memory addresses) after ‘bar’ . It is up to the

programmer to make sure this does not do something unexpected.

% University Lab class scientific computing, Lecture 1

27

&

Utrecht
University

Among other things, pointers are used to prevent copying (large) data in function calls

void do_something(LargeData * numbers, ...) {

= *numbers;

int main() {
LargeData numbers = {...};

do_something(&numbers, ...); // address-of “numbers’

return 0;

Lab class scientific computing, Lecture 1

28

&

Utrecht
University

Among other things, pointers are used to prevent copying (large) data in function calls

void do_something(LargeData * numbers, ...) { // copies pointer, cheap!

= *numbers;

int main() {
LargeData numbers =

do_something(&numbers, ...);

return 0;

Lab class scientific computing, Lecture 1

29

&

Utrecht
University

Among other things, pointers are used to prevent copying (large) data in function calls

void do_something(LargeData * numbers, ...) {

= *numbers; // get “data’ again, with the dereference operator

int main() {
LargeData numbers =

do_something(&numbers, ...);

return 0;

Lab class scientific computing, Lecture 1

30

C programming
Struct: a user-defined type

S‘?’% Utrecht
%ﬂ§ University

&

Utrecht
University

Another category of types: User-defined types

struct vec { // a struct: ‘vec’

double x;

double y;

struct vec north = {6.0, 1.0};

struct vec east = {1.0, 1.0};

(2-dim vector)

// initializations of user-def

types are called objects

Lab class scientific computing, Lecture 1

32

The member access operator (.)

struct Person {
unsigned int age;

float height;

struct Person anna = {32, 1.75}; // an object of type "Person’

anna.age = anna.age + 1;

printf("Anna is %u year, and %f meter tall.", anna.age, anna.height);

// "Anna is 33 year, and 1.75 meter tall."

% University Lab class scientific computing, Lecture 1

&

Utrecht
University

The arrow operator (->)

void some_function(struct vec * direction) {
// option 1: first dereference (*), then member access (.)

= (*direction).x;

// option 2: arrow operator does the same

= direction->x;

Lab class scientific computing, Lecture 1

34

Compilation

e (/C++are compiled languages:
o Compiling, or “building”, turns code into machine-specific instructions for the CPU.
m This gives an executable (in Windows, a .exe). It's not human-readable.
o “Running” means launching the executable on the CPU.
e Installation of a C/C++ compiler:
o Il recommend using Linux, Windows Subsystem for Linux, or MacOS.
m Only use CygWin or MingW if no other option is possible.
o Use the GCC (GNU Compiler Collection)
m Alternative: LLVM or Intel are also fine. Avoid MSVC.
e Choice of editor:
o lrecommend Jetbrains’ CLion, because it has good Linux integration.
o Ifyou are comfortable with e.g., vim or Microsoft Visual Studio + GCC + WSL, this
might be a good alternative.

&y L .
& Unversity Lab class scientific computing, Lecture 1

35

Outline

e Today/this week:
o Set-up your programming environment
m Follow CLion instructions on website
m As atest, compile a simple program
o Reading/scanning
m Read theory on LCRNGs
m Read/go through “C overview”
o Useful: do/read the tutorial Getting started
o [Exercises
m 1.1,1.2,13,14

&y L .
& Unversity Lab class scientific computing, Lecture 1

